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Objectives

Unveil mystery about Maxim Entropy Method as it’s applied in Crystallography
* Answer questions “what it is for?” “why?” “what to expect?”

Describe MEM algorithm and its implementation in Phenix

(phenix.maximum_entropy_map)

Show examples



Crystallographic structure determination as an example of inverse problem

* Inverse problem is a task of converting observed measurements into information about a
physical object. Associated framework provides methods to overcome problems due to ill-

behaved tasks.

* Crystallography context

* We want to study electron density
distribution in unit cell
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* Experimentally we obtain structure

factors

F(s) = j (r)exp(2misr)dV
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Inverse problems

* Exact correspondence between p and F is only when all terms in the summation are present

p(r) = 7 Z RZOOZZO F(s)exp(—2misr) F(s) = fvce”p(r)exp(Znisr)dV
* In reality only a subset of all Fis measured

All reflections Measured reflections (red) Measured reflections: 2D slice
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Infinite number Reflections in sphere R=1/d .. Some reflections in sphere
R=1/d,, may be missing

d..., - highest resolution of dataset _
(blue): incomplete dataset

* Incomplete hkl set means density is not accurate anymore: Fourier image of finite resolution
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Inverse problems
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Toy example: C-N in 10*10*10A P1 box

Electron density distribution along C-N bond vector
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Distance along C-N (A)‘




p(r) =

18

Exact density
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Inverse problems
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2 A resolution Fourier image
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Exact density

o (e/A%)

Distance along C-N (A)‘

Inverse problems

2 A resolution Fourier image

P image
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(e/R)

Distance along C-N (A)

Positive and negative
spurious peaks — Fourier
truncation ripples (artifacts)



Inverse problems

More examples: exact density (red) and 1, 1.5, 2 and A resolution Fourier images

pimage (e/AS) ﬂ | pimage (e/'&3)

Distance along C-N (A) Distance along C-N (A)

e 2 4 6 18 7 7.5 8 8.5 9 9.5 18




Inverse problems

2A resolutlon set of F(s) 2 A resolutlon Fourler image

(e/A3)

P; image
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Exact density
* lll-posed problem in crystallography: we want to

Z Z Z F(s)exp(~2misr) reconstruct image damaged due to finite amount of
TR measured data

p(r) =

cell

e Regularization involves introducing additional
information in order to solve an ill-posed problem

* Itinvolves encoding prior knowledge in terms of
constraints on the solution space like positivity or
smoothness for example.

 Example: density is positive and total charge FO0O0



Inverse problems

p(r)— " i i Z F(s)exp(—2misr)

h=—0 k=—00 [=—00

Ny—1Ny=1N,-1

Fio) =4 N”N . 2. 2 plisiviz)exp(@milhjs + ki +Li]) (Sayre, 1951)

Jx=0 jy=0 jz=0

One can iterate back and forth any number of times — this will not change F(s) and p(s)

Values of F calculated for Miller indices that were not used in calculation of p(s) will always
be zero.
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Inverse problems
2 Z Z F(s)exp(—2misr)
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Vcell

p(r)

Modify density in

some way
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This is a foundation for collection of regularization methods that in crystallography called

Density Modification



Inverse problems

* There are many ways to modify density:

Atomicity (Hoppe & Gassmann, 1964)

Positivity (Barrett & Zwick, 1971)
Noncrystallographic symmetry (Bricogne, 1974)
Solvent flatness (Bricogne, 1974)

Map connectivity (continuity) (Bhat & Blow, 1982)
Histogram matching (Lunin, 1988)

MEM (maximum entropy methods) (Collins, 1982)

NoOoUueWDNE

* Good reviews: Podjarny, Rees & Urzhumtsev, 1996; Cowtan, 2012; Trwilliger (for statistical
Density Modification)

* Purpose: improve density by improving phases and extending the resolution

* Positivity — one of the least model committal constraint (less chances to introduce
model bias) and quick and easy to apply.



New set of reflections

Inverse problems

a 6 8 10

Original map
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Improved map
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0 6 8 10

Modified map

This is may still be far
from ideal density
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Positivity constraint: example

Original data (1.5 A) is highly incomplete and
has 70 degrees phase error

Problem: may grow spurious peaks.




Maximum Entropy map modification

Originates from information theory (Jaynes, 1957)
Useful publications:

Collins, 1982

Gull & Daniel, 1978

Wu, 1984

No paper that provide details enough for painless implementation!

Starting from a positive electron density distribution (which can be flat) we want to “grow”
such a new density distribution:
a) thatis as flat as possible (= has highest, maximum, entropy), and
b) the structure factors calculated from this new distribution are close enough to original
data within prescribed tolerance

There are many admissible maps: the maps that are close to the original data within the
tolerance

During the process entropy drops, and NOT increase. This is counterintuitive as the method
is called maximum entropy

Method is called maximum entropy because we choose that map (among all admissible
ones) that is the flattest one (has highest entropy)



Maximum Entropy map modification: basic definitions

Find grid function {p; IY_I such that maximizes residual H(p) — 2 Qx(p) » max,A >0
J ]:0 2

and p; = 0 Vj,zyz_olpj =1.

+ H(p) = =X} pjin (p;) - entropy

2 .
Qx (P) = Yrex Wi|Fx — FE*°| - constraint term

1 «N— . jk : : :
F.(p) = ﬁz?gol p;EXp [Zm ]F] - complex inverse discrete Fourier transform

{FObS} - defined complex numbers, K - given set of reflections
k Jkek

F°bs = F2Ps (have Hermitian symmetry)

1 forkeK
0 otherwise

Assume: pIn(p) =0ifp =0, wy, = {



Maximum Entropy map modification: basic definitions

* Find grid function {p; IY_l such that maximizes residual H(p) — éQX p) = max,A >0
& JJj=0 2

andp; =0V, Y g p;=1.
* H(p) = —Z?’;ol pjln (p;) - entropy
* Qx(P) = Dkex Wk|Fk — F,‘(’bs|2 - constraint term

N—-1 .

Remark #1: for obscure to me reasons, most of papers uses KL(p) = — Z p;ln <%> and call it
o .

entropy, while KL is Kullback-Leibler divergence (or cross entropy) ! !

Remark #2: | was not able to find the meaning and purpose of tin crystallographic context, and
why sometimes KL is used over H, and vice versa.

Remark #3: Functions such as —In(x) or even —u/2 have similar properties as H(x). Function —u?/2
have no information theory justification! Using any of these functions make no different on
final result (Narayan & Nityananda, 1986).

Remark #4: Constraint term Q can be more complex, such as weighted sum of phased and
phaseless reflections. | may also include other information such as symmetry, solvent/
macromolecule mask and other a priori known information.

Remark #5: This is very similar to crystallographic model refinement where the optimizing

targetis Ty, + W*T, -> min.

ata restraints



Maximum Entropy map modification: basics

* Maximization H(p) — %Qx(p) — max is achieved by solving N non-linear equations w.r.t. p:
d A o
ap H(p) - EQx(P) =

N — number of grid points

N-1
H(p) = —Z_ . pjlnp; —entropy
]:

2 .
Qx(p) = Z wy |Fe — F2P9| — constraint term

* Evaluating derivatives results in N equations

p=AexplA(p — pops)]

that are solved using iterative procedure



Derivatives of Q,(p) w.r.t. p

d N-1 2
—Qy(p) =7 Oy = > w,|F,-F;
dp h=0
N-1 1N'1 ]h N-1 ]h
p={pj}j=0 Fh=ﬁj20pjexp[2nlﬁl , h=0,..,N-1 pj=;Fhexp[—2mﬂ , j=0,..,N-1

‘Fh_F;2=FhETh_ET;Fh_FZFh+F}LOF_Z a0

[ | R R S N
P, o ap,; ap;

iFh =iexp 2m’ﬂ]

oo NLN ) 1 . 1a jh
a_QX(p)=NEwh (Fh —F,f)exp[—ZniN]+NEwh(Fh—F,f)expl—mriﬁ]
0 — 1 [ jh J h=0 h=0
—F, =—exp|-2mi—
0P, N

Since Fourier coefficients have Hermitian symmetry result of summation are real numbers that
invariant under complex conjugation operation:

5 5 Nl ih N-1 jh N-I ih
a_p.QX (p)= NEW;Z (Fh - F}f)exp[—Zniﬁ] P = Ethh exp[—ZmN] ;thh expl—zmﬁ] = (T = p)j

h=0

%Qx(p) = N(T*P—P”) Here: Tis interferention function and p° = p_,



Calculation algorithm (inputs)

Inputs

+ Structure factors {F" }

kEK

* Total charge F,
e Gridding N (N1, N2, N3)

+ Scale C,, that brings {F{"} _onto absolute scale (C,,,=1 if {F"}

obs .on absolute scale)

ke

Remark #1: Input structure factors can be phased or phaseless F
coefficients and other intrinsically positive maps.

obs’ 2m I:obs'D Fmodel map

Remark #2: MEM can be applied to residual (example: mF_, .-DF
coefficients are calculated first mF_,, and DF

odel) Maps. For this two sets of
then corresponding maps are subject to
MEM procedure. The difference between two MEM modified maps is the desired residual
map.

model 7

Remark #3: If amplitudes of input structure factors are measured data (F_,.) and experimental
uncertainties (o) are available, then residual Q, is simply x?, and its statistical properties can be
used to choose appropriate weight A and determine convergence.



Calculation algorithm (parameters)

Parameters

robs
e Weight A, which defines how much we allow deviate new map coefficients from{ k }kEK
* Memory coefficients B (0.1-1.0), which insures convergence by preventing oscillations

e Number of iterations



Calculation algorithm (optimization procedure - I)

Optimization procedure

1. Prepareinputs

 Scale input data F” = Cops F™
NF,

M obs oos ] .k
« Compute synthesis o =EWkab exp[—zmjﬁ]

kEK

* Define A;p=1/N, N — number of grid points (used to enforce Z (total charge) = 1)

2. Obtain initial approximation. Any of three works and does not change the outcome:

obs obs
(0) _ ~ Phmin

K E(,OO’” p)

* Flat map: set all grid points to a constant value

* LDE (replace negative density with some small values)



Calculation algorithm (optimization procedure - Il)

Optimization procedure

3. Iterations, starting from o , at (n+1) step given ,0(”) from previous step:

* Compute

(n) . jk mod _ (n) s Jk
P; exp[ZmW} P; I«ZKWka exp[ 2mN

(.,1)) Agpexp[-AA, /N
1+]/\1,AGD exp[—)LAj/N]

A A:p

o] (n)
fa <0 P =(1+—p4,. )
’ N exp[ﬂAj/N]+ ]/\tAGD

() Q
VARRES E P,
Jj=0

. . nt 0 |
Next iteration map: pﬁ. 1)=(1—/3),oj+/3W,oj

Update every 5-25 iterations: A = A% /7"

mod obs

Aj=p;" =P



Calculation algorithm (control parameters)

Control parameters

1. Optimization targets H(p) and Q(p): both should decrease

2. Total unit cell charge Z= E,Oj . it should converge to 1

j=0

3. Normalized entropy H,( ! E’OJ InZL : it reaches its max value if p,=1/NV j

/ 2 F:bs
kEK

5. Scale factor k_that minimizes function E Wi

keEK

4. R-factor: R(p)= Y |F, - F"
keEK

2
: k. should converge to 1.

1.6

1111




Implementation in Phenix

Source code

cctbx/maptbx/mem. py : 288 lines
cctbx/regression/tst mem.py : 116 lines
cctbx/maptbx/statistics.h : 75 lines
cctbx/maptbx/boost python/statistics.cpp : 24 lines

Usage (command line):
phenix.max entropy map model.pdb map.mtz
GUI is available (THANKS NAT!)
Program outputs one MTZ file containing two maps: original and MEM maps

Original and MEM maps are scaled such that they have identical cumulative
histogram



8,002

8.0018

8.8016

8.80814

8,80812

8.e01

08,0008

08,0006

08,8084

8.88082

-8,08802

Examples

Restoration of 1.5 A resolution image

exact

synthesis we—
HEH

L:]



Examples

Restoration of 2 A resolution image

8.885 T T T T
exact
synthesis we——
HEH
08,0045 - (\ _
8.8084 -

08,8835

8.883

8,8825

8,882

8,8815

8.801

8,8885

-8.,0005 . . . .




Bottlenecks

Runtime: takes from few seconds to few minutes

Sensitive to FOOO estimation (needs to be accurate)

Starting data is fixed: updating phases should improve the impact:
* This is why effect with real data is not strong

Generates map coefficients up to very high resolution: ~0.3..0.5 A

e Cootis too slow



